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The limit cycle #utter of a two-dimensional wing with non-linear pitching sti!ness is
investigated. For modelling the aerodynamic forces of the wing steady linear and non-linear
models as well as an unsteady model were used. The #utter speed was calculated using the
harmonic balance method and by predictingHopf bifurcation. Analytical solutions based on
the centre manifold theory and normal forms were obtained as were results given by the
harmonic balance method. The analytical solutions were compared with those obtained by
numerical integration. The results show that the harmonic balance method can forecast
#utter speed with a good accuracy while analytical solutions based on centre manifold
theorem are accurate only in a small neighbourhood of the bifurcation point. The oscillation
of the airfoil after #utter for two di!erent models, linear and non-linear pitching sti!ness
were compared with each other and the #utter speeds for two linear steady and an unsteady
aerodynamic model calculated. The obtained results show that #utter analysis based on the
linear steady model is conservative only for the ratios of plunge frequency to pitch frequency
lower than 1.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Dynamical analysis of non-linear wing structures has been the subject of recent
investigations. By introducing non-linear sti!ness, Zhao and Yang [1] showed that the
oscillation of the wing might become chaotic for certain positions of the elastic axis. Liu and
Zhao [2] studied the bifurcation in the oscillation of an airfoil with pitch non-linearity.
They used a steady aerodynamic model and showed that results obtained by the harmonic
balancemethod are in good agreement with other methods. Yang [3] studied the limit cycle
#utter of two models of a wing/store combination, a two-dimensional wing and a delta
wing. In his study a linear model for the elastic behaviour of the wing in pitch was assumed.
He showed that in some cases the features of the limit cycle #utter obtained by numerical
integration can be predicted by the equivalent linearization method based on the second
order asymptotic solution of the KBM method.
A two-dimensional #exible airfoil with a freeplay non-linearity in pitch in the subsonic
#ow was analyzed by Kim and Lee [4]. They used a doublet lattice method to obtain
unsteady aerodynamic forces and showed that #exibility e!ect on #utter speed is signi"cant
when the frequency ratio of the pitch to plunge is '1.
The present work uses a two-dimensional airfoil in incompressible #ow with non-linear

sti!ness and linear viscous damping. In most investigations researchers have used a linear
steady aerodynamic model to de"ne the aerodynamic forces applied to the wing. Here,
022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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however, steady linear and non-linear and also unsteady aerodynamic models have been
assumed, and the e!ect of these models on the #utter speed has been studied.

2. EQUATIONS OF MOTION

A schematic representation of a two-dimensional airfoil section is presented in Figure 1
with the following parameters: �"12)8, a"!0)41, b"0)118, c"0)2, �

�
"34)6, ��"88,

r��"0)3, x�"0)15 where �"m/��b� is the airfoil air-mass ratio, � is the air density, m is
the mass of the wing per span length, b is the semi-chord length, ab is the distance of the
elastic axis E from the mid-chord length, (0)5#a)b is the distance of E from the
aerodynamic centre A, x�b is the distance of the center of gravity G from E and is positive
whenG is located aft of E towards the trailing edge, r�b is the radius of gyration of the airfoil
with respect to the elastic axis, and �

�
, �� are the eigenfrequencies of the constrained

one-degree-of-freedom system associated with the linear plunging and the pitching springs
respectively. C"c�/��b���"c

�
/��b��� is the non-dimensional damping coe$cient

where c�, c� are the coe$cients of damping in pitch and plunge respectively.
In terms of non-dimensional time �"t�� and non-dimensional plunge displacement

H"h/b the equations of motion are:
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where Q
�
, Q� are aerodynamic lift and aerodynamic moment of lift around the elastic axis.

By introducing a cubic pitching sti!ness term, the governing equations are obtained as:
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where e is a non-linear sti!ness factor and as in reference [2], its numerical value is 20.
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Figure 1. Sketch of a two-dimensional airfoil.
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3. AERODYNAMIC MODEL

3.1. STEADY FLOW WITH A LINEAR MODEL

To obtain the aerodynamic lift and moment of the airfoil in a steady #ow, the data from
wind tunnel tests for a section NACA 23024 was used and a linear regression was assumed
for angles of attack (�) between !10 and 53 [5].
By employing a linear model for steady #ow, equations (2) become:

12)8H�#1)92��#0)2H�#1)97H"!

1
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(3)

where v is the #ow velocity.

3.2. STEADY FLOW WITH A NON-LINEAR MODEL

Polynomials of degrees 5 and 3 were "tted, respectively, for the aerodynamic lift and
aerodynamicmoment using the experimental data available for NACA 23024. Tomodel the
aerodynamic forces of the wing for angles between!10 and 203 a "fth order polynomial
was used. For this model the governing equations of motion are:
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(4)

3.3. UNSTEADY MODEL

To obtain the aerodynamic forces of an oscillating airfoil usually a simple harmonic
oscillation of in"nitesimal amplitude is superposed on the airfoil. Since arbitrary motions of
an airfoil can be decomposed into harmonic components by means of Fourier analysis,
harmonic oscillation forms the basis of general airfoil theory in unsteady #ow. In this study
the results obtained by Theodorsen [6] for an airfoil with harmonic oscillation have been
used.
By employing an unsteady model for the aerodynamic forces, equations (2) become:
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(5)
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4. HARMONIC BALANCE METHOD

To "nd the #utter speed by a "rst order harmonic balance method the sti!ness term
k
�
�#e�� in equation (3) is replaced by an equivalent sti!ness term k��. Consequently, the
#utter determinant for steady #ow with a linear model can be written as:

�
!12)8��#0)2i�#1)9787 !1)92��#0)01643v�

�
!1)92�� !3)84��#0)2i�#k�!0)00438 v�

�
�"0 , (6)

where �"�
�
/�� is the non-dimensional #utter frequency and �

�
is #utter frequency and

v
�
is #utter speed. The equivalent linear sti!ness is

k�"k
�
#

3

4
eA�, (7)

where A is the amplitude of � in the limit cycle. By separating real and imaginary parts of
equation (6) the following equations can be obtained:
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(8)

To "nd the #utter speed, A was assumed to be zero in equation (7). The analysis is valid for
airspeeds lower than the static divergence speed v

�
[2], which can be found from equation

(3) to be�k
�
�b���� /1)4845 where k� is 3)84. For this value of k� the static divergence speed

is 29)6 m/s. The amplitude of the limit cycle after #utter for di!erent speeds found by solving
the equations (8) together is shown in Figure 2. For other aerodynamic models the #utter
speed using the harmonic balance method was calculated (Table 1). The equivalent linear
terms �

�
A�� , 0 were used for nonlinear terms ��,�� in the non-linear aerodynamic model.

For v(v
�
"17)19 m/s the static equilibrium point is a stable focus while for v'v

�
it

becomes unstable and a limit cycle develops. The amplitude of this limit cycle will grow as
v increases (Figure 2).
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Figure 2. Amplitude of � in the limit cycle with variation of #ow velocity (obtained from linear steady model).



TABLE 1

Flutter speed and -utter frequency using harmonic balance

Aerodynamic
model

Linear steady
model

Non-linear
steady model

Unsteady
model

v
�
(m/s) 17)19 17)54 19)38

v
�
(m/s) 29)6 30)42 47)96
� 0)521 0)522 0)823

�
����� � �	

45)848 45)936 72)424

(a) (b)   

(c) (d) 
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Figure 3. Time histories and phase diagrams of the airfoil response in unsteady #ow (v"8 m/s).
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5. NUMERICAL INTEGRATION

A "fth order Runge}Kutta subroutine was used as numerical integration method and the
oscillation of the airfoil with unsteady aerodynamic model for some velocities before and
after #utter was studied (Figures 3}8).
For step-by-step integration, equations (5) should be written as a "rst order di!erential

equation. The state variables are de"ned as:

X"(x


, x

�
, x

�
, x

�
)�"(�, ��,H, H�)� , (9)

and the state space form of equations (5) is

X�"AX#f (X) , (10)
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Figure 4. Time histories and phase diagrams of the airfoil response in unsteady #ow (v"15 m/s).
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Figure 5. Limit cycle appeared in phase diagram after #utter (v"19)5 m/s).
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where

A"�
0 1 0 0

!1)0268#0)0012v� !0)0535!0)0069v 0)0895 0)009#0)0133v

0 0 0 1

0)1734!0)0015v� !0)0185v#0)009 !0)1586 !0)016!0)0162v� ,
f (X)"(0 !1)1338 0 0)1914)�x�
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Figure 6. Time histories and phase diagrams of the airfoil response in unsteady #ow with initial conditions in
the limit cycle (v"20 m/s).
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Figure 7. Time histories and phase diagrams of the airfoil response in unsteady #ow with initial conditions out
of the limit cycle (v"20 m/s).
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Figure 8. Time histories and phase diagrams of the airfoil response in unsteady #ow (v"22 m/s).

TABLE 2

Amplitude of limit cycle for various -ow speeds (unsteady model)

Amplitude of �

v(m/s) Numerical integration Harmonic balance

19)5 0)0516 0)1196
19)8 0)1812 0)2113
20 0)2308 0)2551
21 0)3989 0)4128
22 0)5203 0)5299
24 0)7146 0)7189
26 0)8793 0)8794
30 1)1688 1)1616
34 1)4316 1)4179
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To calculate the #utter speed by numerical integration the velocity of the #ow was
increased from 19 m/s until the limit cycle in the phase plane appeared. The approximate
value of the #utter speed was seen to be 19)468 m/s. The amplitude of � in the limit cycle for
di!erent #ow velocities after #utter is recorded in Table 2.

6. THE METHOD OF NORMAL FORM AND CENTRE MANIFOLD THEORY

For system (10) from numerical integration it was seen that bifurcation occurs at
v"v

�
"19)468. Let u"v!v

�
be the new control parameter, then at u"0 the four
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eigenvalues of the linearized system are:

	

��

"$0)8216i, 	
���

"!0)2615$0)3372i . (11)

To obtain the Jordan form of matrix A the transformation X"PY was used, where P is
a (4�4) matrix formed by real and imaginary parts of the eigenvectors, and
Y"( y



y
�
y
�
y
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) �. By employing this transformation equation (10) is reduced to
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According to the centre manifold theorem equation (12) has a centre manifold
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and the cubic ones
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By substituting h
�
, h

�
from equation (13) in equation (12) and according to the trivial

equation uR "0 the #ow on the centre manifold is obtained as
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To "nd the periodic orbits after #utter the method of normal form was used. The normal
form of equation (15) is written in the complex plane by the transformation:

y


"�#�M ,

y
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"i(�!�M ).

(16)

Using the non-linear transformation �"�#h (�, �N )#2 where

�R "i�# g (�, �N ) (17)

and the equation rrR "Re(�R �N ), the di!erential equation (15) can be written in polar
co-ordinates [7]

rR "r�(!0)57512�10��u�#0)00010u�!0)00037u!0)04622)

#r(0)25706�10��u�#0)00052u�#0)01354u) .
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The non-zero equilibrium point r
�
of equation (18) is the amplitude of the limit cycle of

the system in polar co-ordinates and the sign of f �(r) determines the stability of the limit



TABLE 3

Amplitude of limit cycle for various -ow velocities (unsteady model)

Amplitude of �

v(m/s) Second degree
polynomial

Third degree
polynomial

Numerical
integration

19)5 0)0564 0)0565 0)0516
19)8 0)1810 0)1830 0)1812
20 0)2284 0)2326 0)2308
21 0)3827 0)4041 0)3989
22 0)4863 0)5360 0)5203
24 0)6380 0)8105 0)7146
26 0)7538 * 0)8793
30 0)9348 * 1)1688
34 1)0806 0)9317 1)4316

TABLE 4

Flutter speed and -utter frequency obtained by Hopf bifurcation

Linear steady
model

Non-linear steady
model

Unsteady model

v
�
(m/s) 17)19 17)57 19)35

� 0)5214 0)5228 0)8235
�

����� � �	
45)883 46)006 72)468
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cycle. By transforming back to the physical co-ordinate, � becomes

�"r
�
[(0)088329!0)020169u) cos�#(!0)576441#0)014642u) sin�] (19)

and the amplitude of � in the limit cycle is

�"r
�
�(0)088329!0)020169u)�#(!0)576441#0)014642u)� . (20)

For cubic polynomials we have

rR "0)000127r�#r�(0)45168�10��u�!0)00013u#0)00092)

#r� (0)73991�10��u�!0)32010�10��u�#0)000053u�!0)00067u#0)0057)

#r�(0)90699�10��u�!0)19488�10��u�!0)92180�10��u�!0)000014u�

#0)00045u�!0)00095u!0)04622)

#r(!0)13446�10��u�!0)00007u�#0)00052u�#0)01354u)"0. (21)

The amplitude of the limit cycle for various #ow velocities is recorded in Table 3.

7. HOPF BIFURCATION

The #utter speed and its frequency calculated by predicting Hopf bifurcation are
recorded in Table 4. This was done through Bifpack program [8] that uses a trial and error
scheme and predicts Hopf bifurcation.
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Flutter speeds and frequencies obtained by Hopf bifurcation are equal to those calculated
from harmonic balance method. However, the #utter frequency adjusts itself to the #utter
speed such that equations (8) are always satis"ed. The di!erence in #utter frequencies for
di!erent aerodynamic models as recorded in Tables 1 and 4 can be explained in the light of
the aforementioned equation.

8. CONCLUSIONS

A two-dimensional airfoil with di!erent aerodynamic models was studied and the
dynamic responses for steady and unsteady aerodynamic models and for di!erent #ow
speeds were investigated. The results obtained indicate that:

1. The #utter speed obtained from linear steady model and non-linear steady model are
nearly equal to each other. However, the #utter speed calculated from an unsteady model is
di!erent to the steady model (Figure 9). For �

�
/��(1 the #utter speed calculated from an

unsteady model is greater than a steady model speed, but when �
�
/��'1 a steady model

shows a greater #utter speed than an unsteady model.
2. As Liu and Zhao [2] mentioned, the harmonic balance method can provide useful

information about the #utter speed and the amplitude of limit cycle after #utter.
3. By comparing the results obtained from analytical methods and numerical integration

it is seen that the results obtained by centre manifold theory and normal form are
(a) 
(b) 
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Figure 10. Phase diagrams for #ow speed of 20 m/s. (a) Linear spring model; (b) non-linear spring model.
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satisfactory only in the neighbourhood of the critical point. The degrees of polynomials
used to approximate functions h

�
, h

�
can increase the boundary of accuracy.

4. The existence of cubic non-linearity in the sti!ness term did not a!ect the #utter speed,
but the responses of the two systems with linear sti!ness (Figure 10(a)) and non-linear
sti!ness (Figure 10(b)) after #utter is di!erent from each other. The conclusion is correct for
other types of non-linearity. Similar to the cubic non-linearity, an equivalent linear model in
� can be used as follows:

k
�
�#k



��#k

�
��#2 "k

�
�#�

�
k


A��#�

�
k
�
A��#2 .

Since in calculating the #utter speed,A is assumed to be zero in the above equation, the type
of non-linearity does not a!ect the #utter speed.
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